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NOMENCLATURE 

film-cooling slot width; 
function ; 
heat-transfer coefficient (defined in text); 
thermal conductivity of fluid; 
length ; 
Nusselt number based on d; 
pressure ; 
Prandtl number; 
wall heat flux ; 
Reynolds number based on d; 
temperature ; 
velocity components; 
coordinates. 

Greek symbols 

4, effectiveness, = (T,, - T,)/( T, - T, ) ; 
0, dimensionless temperature (defined in text). 

Subscripts 

a, adiabatic wall case; 
cw, adiabatic wall value: 
c, coolant value; 
h. heat transfer case; 
P, pressure; 
n, c’, velocity ; 

; 
wall ; 
temperature ; 

7; > mainstream value. 

Superscript 

dimensionless value (defined in text). 

I. INTRODUCTION 

FILM-COOLING, which is the protection of a surface from a hot 
gas by means of coolant injection adjacent the wall, has 
important practical applications and numerous examples are 
readily called to mind. In an excellent review paper on film- 
cooling, Goldstein [l] reports the results of many in- 
vestigations, the majority of which involved empirical cor- 
relation of the data. 

Of special interest in this field of study, are the adiabatic 
wall temperature, T,,,, and the associated ‘effectiveness’, [; 
these appear to have been foremost in the minds of the 
investigators. An equally important parameter is, of course, 
the heat-transfer coefficient, h, which in the film-cooling 
situation is defined as 

h = qJ(T,, - T,). (1) 

It is to be borne in mind, that coolant injection may 
significantly alter the flow field and hence the value of h. This 
particular problem has been studied recently by numerical 

methods [2] and it is evident that the local values of the heat 
transfer coefficient with and without film-cooling may be 
markedly different. As a consequence of this latter in- 
vestigation, an interesting anomaly arose which was con- 
sidered worthy of further enquiry. An examination of the 
literature indicated what variables might be expected to 
appear in any analysis of the problem, but a similarity study 
of the pertinent conservation equations revealed an un- 
expected result, It is with this particular part of the in- 
vestigation [2] that the present technical note is concerned. 

2. SIMILARIl?’ ANALYSIS OF FILM-COOLING 

Figure 1 shows the film-cooling model and Table 1 lists the 
appropriate boundary conditions, where 

&X; $2; 
U 

UT=-. 

d d 
c’=u; /-p= 

UX U, PU’, 

where p = density and 

for the adiabatic wall case and the heat transfer case 
respectively. 

It is readily shown that the non-dimensional forms of the 
conservation equations for steady constant property laminar 
flow are 

(and a similar equation for the y-direction) 
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FIG. 1. Film cooling model. 
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Table 1. Boundary conditions 

Adiabatic wall temperature case, 
Pb = (T- T,/T, - T,) 

Variable N-face S-face E-face W-face 

u< 1 0 f .(Y’) 
u’ 0 0 f.lv’) 

fb”;) 

D’ 0 - - - 
r 

s:, 0 
as:, 

-0 f e(Y’) 
Y’>l, 0 

z- Y’<l, 1 

Heat transfer case, 
0; = (T- T,/T, - T,) 

Variable N-face S-face E-face W-face 

li 1 0 f “(Y’) f (4) 
UT 0 0 f”(Y’) 0 
PI 0 - - 

0 s;, 0 1 few Y’Zl, 

y’<l, si 

where the Reynolds number, Re = (urn&v) and v = kine- 
matic viscosity. 

Now the examination of these four equations indicates that 
they are second order in both x’ and Y’ for the velocities and 
the temperature, and first order in x’ and y’ for the pressure. 
Accordingly, four boundary conditions are required for each 
of u’, u’ and 0’ and one boundary condition for p’ in x’ and also 
in y’ if a solution is to be effected. The boundary conditions 
are listed for the two relevant cases in Table 1. 

If a solution is possible, then the dependent variables u’, u‘, 
p’ and B’ may be expressed in terms of the independent 
variables X‘ and y’ and (according to Eckert and Drake [3]} 
‘all constant parameters contained in the differential equa- 
tions and in the boundary conditions’. 

Therefore, for the adiabatic wall case 

u’ =f.(x’, y’, Re, Pr, u:) 

u’ = f “(x’, y’, Re, Pr, u:) 

P’ =f#‘, Y’, Re, Pr, u:) 

Pb =fe(x’, y’, Re, Pr, I&) 

(3 

(6) 

(7) 

(8) 

it being remembered that 0: is defined as shown in Table 1. 
The adiabatic wall distribution is obtained from equation 

(8) with y’ = 0 as 

@&+, =fXx’, Re, fi, n:) (9) 

which is the result anticipated and supported by experimental 
evidence [l]. That is, for a given fluid, the local adiabatic wall 
temperature is dependent on the injection velocity ratio, u:, in 
addition to the main flow velocity. 

Referring now to the case when heat is transferred at the 
wall, the following results are obtained 

u’ =f.(x’, y’, Re, Pr, u:, &) (10) 

u’ =fv(x’. y’, Re, Pr, ul. f&J (11) 

P’ =f&x’, Y’. Re, Pr, 14, 4J (12) 

f& = f&x’, y’, Re, Pr, u:, &,). (13) 

It is important to note at this point: 

(1) that 8’ is redefined as indicated in Table 1, and; 
(2) the appearance of f?L in the functions in addition to the 

injection velocity ratio. 

The analysis may be developed even further to obtain an 
expression for the heat transfer coefficient, h, or its dimension- 
less counterpart, the Nusselt number, Nu, and of course the 
general results are valid for turbulent flow. 

Since, 

L?T 
h=4,=_&.- 

Tcw - T, I i 3Y r-0 
T,, - T, (14) 

Substitutions for T using both I!$ and & defined previously 
may be made to produce 

(16) 

Nu = f&x’, Re, Pr, a;, %,) 

f&x’, Re, Pr, u:)&, - 1 
(18) 

Nu = f&c’, Re, Pr, u;, t&). (19) 

Here then is the anomaly referred to earlier. Unlike other 
forced convection correlations, the tem~rature level (of the 
injected fluid in this case) appears as a variable in the problem 
which is not in accordance with experimental evidence and 
the numerical prediction of constant property turbulence 
film-cooling, [Z]. A possible explanation of this anomaly is as 
follows. 

Consider unidirectional steady state heat conduction for 
which the second-order differential equation is 

a* T . . 
- 0. dX2- (20) 

If the boundary conditions are T= T,, at x = 0, and T= T, 
at x = L, then the solution for the temperature, T, is easily 
shown to be 

(21) 
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In other words, the temperature is the sum of two terms each flow characteristics only, when the properties of the fluid are 
of which is a boundary value multiplied by a function which is independent of temperature. 
independent of the boundary values. Each of these functions 
is a degree less than the order of the original differential 3. CONCLUSION 
equation, and each term satisfies the original differential 
equation. 

In the present problem on film-cooling, the four boundary 
conditions for the temperature, &,, include the coolant 
temperature Oh, (the anomalous parameter) in the final 
expression for the heat transfer coefficient. On the basis of 
what has been observed concerning the form of the solution 
for unidirectional heat conduction, it is possible that the 
boundary value may be removed from the function in 
equation (19) leaving a function which is independent of the 
boundary temperatures. Accordingly, the heat-transfer coef- 
ficient may then be 

Nu = f&x’, Re, Pr, ul) (22) 

which is consistent with the accepted form of convective heat 
transfer correlations with temperature independent fluid 
properties. That is, for a given fluid, the local heat transfer rate 
in convective heat transfer is determined by the geometry and 

A rigorous treatment of film-cooling heat transfer by 
similarity analysis results in an anomalous result concerning 
the parameters on which the local heat transfer coefficient 
depends. By examining the form of the solution for a simple 
heat conduction problem involving boundary conditions, a 
suggestion has been made as to how the irregularity may be 
removed from the film-cooling problem. 
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